Just copy the code and send it to your analyst to repeat!
Upgini will quickly generate a quality report. Ask your analyst to send it to you to check the result.
%pip install -Uq upgini
# read labeled data
df = pd.read_csv("train_data_set.csv")
from upgini import FeaturesEnricher, SearchKey
# map data
enricher = FeaturesEnricher(
search_keys={'Date': SearchKey.DATE,
'Phone_number': SearchKey.PHONE,
'IPv4': SearchKey.IP})
# launch fit step
enricher.fit(df[['Date','Phone_number','IPv4']],
df['client_label'])
# launch enrichment step
df_enriched = enricher.transform(df)
Upgini will quickly generate a quality report. Ask your analyst to send it to you to check the result.
%pip install -Uq upgini
# read labeled data
df = pd.read_csv("gpt_train_dataset.csv")
from upgini import FeaturesEnricher, SearchKey
# map data
enricher = FeaturesEnricher(
search_keys={'Date': SearchKey.DATE,
'phone_number': SearchKey.IP},
generate_features=['text1', 'text2']
)
# launch fit step
enricher.fit(df[['Date','phone_number', 'text1', 'text2']],
df['call_back_required'])
# launch enrichment step
df_enriched = enricher.transform(df)
Upgini will quickly generate a quality report. Ask your analyst to send it to you to check the result.
%pip install -Uq upgini
# read labeled data
df = pd.read_csv("gpt_train_dataset.csv")
from upgini import FeaturesEnricher, SearchKey
# map data
enricher = FeaturesEnricher(
search_keys={'Date': SearchKey.DATE,
'phone_number': SearchKey.IP},
generate_features=['text1', 'text2']
)
# launch fit step
enricher.fit(df[['Date','phone_number', 'text1', 'text2']],
df['churn'])
# launch enrichment step
df_enriched = enricher.transform(df)
No credit card required. No time limit on Free plan